Using the OpenFileDialog and SaveFileDialog Controls

Using the OpenFileDialog Control

The OpenFileDialog control is used to display a dialog box that enables the user to browse and select a file. It’s important to note that usually the OpenFileDialog doesn’t actually open a file, but it enables a user to select a file so that it can be opened by code.

Add a new OpenFileDialog control to your project by double-clicking the OpenFileDialog item in the toolbox.

Note: The OpenFileDialog (line the Timer control) doesn’t have an interface so it appears in the area below the form rather than on it.

For the user to browse for files, you have to manipulate the OpenFileDialog, using its properties and methods.

Let’s say you want to add a button that enables a user to locate and select a file. If the user selects a file, the filename is placed in a text box.

1. Add a button to the form, and set its properties as follows:

2. Double-click the button, and add the following code to its Click event:

OpenFileDialog1.InitialDirectory = “C:\”

OpenFileDialog1.Title = “Select a File”

OpenFileDialog1.FileName = ““

The first statement specifies the directory to display when the dialog box is first shown. If you don’t specify a directory for the InitialDirectory property, the active system directory is used.

The Title property of the OpenFileDialog determines the text displayed in the title bar of the Open File dialog box. If you don’t specify text for the Title property, Visual Basic displays the word Open in the title bar.

The FileName property is used to return the name of the chosen file. If you don’t set this to an empty string before showing the Open File dialog box, the name of the control is used by default—not a desirable result.
Creating File Filters

Different types of files have different extensions. The Filter property determines what types of files appear in the Open File dialog box. A filter is specified in the following format:

Description|*.extension

The text that appears before the pipe symbol (|) describes the file type on which to filter, whereas the text after the pipe symbol is the pattern used to filter files. For example,

to display only Windows bitmap files, you could use a filter such as the following:

control.Filter = “Windows Bitmaps|*.bmp”

You can specify more than one filter type. To do so, add a pipe symbol between the filters, like this:

control.Filter = “Windows Bitmaps|*.bmp|JPEG Files|*.jpg”

If you want to restrict your Open File dialog box to show only text files, so enter this statement in your procedure:

OpenFileDialog1.Filter = “Text Files (*.txt)|*.txt”

When you have more than one filter, you can specify which filter appears selected by default by using the FilterIndex property. Like this…

OpenFileDialog1.FilterIndex = 1

Note: Unlike most other collections, the FilterIndex property is 1-based, not 0-based, so 1 is the first filter listed.

Showing the Open File Dialog Box

Finally, you need to show the Open File dialog box and take action based on whether the user selects a file. The ShowDialog() method of the OpenFileDialog control acts much like the method of forms by the same name, returning a result that indicates the user’s selection in the dialog box.

Enter the following statements into your procedure:

If OpenFileDialog1.ShowDialog() <>
 Windows.Forms.DialogResult.Cancel Then

 txtSource.Text = OpenFileDialog1.FileName

Else

 txtSource.Text = ““

End If

This code just places the selected filename into the text box txtSource. If the user clicks Cancel, the contents of the text box are cleared.

Run the project, and click the button. Select a text file and click Open. Visual Basic places the name of the file into the text box.

Tip: By default, the OpenFileDialog doesn’t let the user enter a filename that doesn’t exist. You can override this behavior by setting the CheckFileExists property of the OpenFileDialog to False.

Tip: The OpenFileDialog control can allow the user to select multiple files. If you’re interested, take a look at the Multiselect property of the OpenFileDialog in the Help text.

Using the SaveFileDialog Control

The SaveFileDialog control is similar to the OpenFileDialog control, but it allows a user to browse directories and specify a file to save, rather than open. Again, it’s important to note that the SaveFileDialog control doesn’t actually save a file; it’s used to allow a user to specify a filename to save. You have to write code to do something with the filename returned by the control.

You’ll use the SaveFileDialog control to let the user specify a filename. This filename will be the target of various file operations that you’ll learn about later
Follow these steps to create the Save File dialog box:

1. Create a new text box on your form, and name it txtDestination:

2. Create a button that, when clicked, enables the user to specify a filename by which to save a file. Add a new button to the form, and name it something like btnSaveFile
3. Add a Save File dialog box. Doubleclick the SaveFileDialog item in the toolbox to add a new control to the project.

4. Double-click the new button you just created, and add the following code to its Click event:

SaveFileDialog1.Title = “Specify Destination Filename”

SaveFileDialog1.Filter = “Text Files (*.txt)|*.txt”

SaveFileDialog1.FilterIndex = 1

SaveFileDialog1.OverwritePrompt = True

The first three statements set properties identical to those of the OpenFileDialog. The OverwritePrompt property is unique to the SaveFileDialog. When this property is set to True, Visual Basic asks users to confirm their selections when they choose a file that already exists.

It’s highly recommended that you prompt the user about replacing files by ensuring that the OverwritePrompt property is set to True.

Tip: If you want the Save File dialog box to prompt users when the file they specify doesn’t exist, set the CreatePrompt property of the SaveFileDialog control to True.

5. The last bit of code you need to add places the selected filename in the txtDestination text box. Enter the code as shown here:

If SaveFileDialog1.ShowDialog() <>

 Windows.Forms.DialogResult.Cancel Then

 txtDestination.Text = SaveFileDialog1.FileName

End If

Run the project, and then click each of the buttons and select a file.

